You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

184 lines
7.3 KiB

{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE OverloadedStrings #-}
module Network.Xmpp.Sasl.Scram where
import Control.Applicative ((<$>))
import Control.Monad.Error
import Control.Monad.Trans (liftIO)
import qualified Crypto.Classes as Crypto
import qualified Crypto.HMAC as Crypto
import qualified Crypto.Hash.SHA1 as Crypto
import Data.Binary(Binary,encode)
import Data.Bits
import qualified Data.ByteString as BS
import qualified Data.ByteString.Base64 as B64
import Data.ByteString.Char8 as BS8 (unpack)
import qualified Data.ByteString.Lazy as LBS
import Data.List (foldl1', genericTake)
import qualified Data.Binary.Builder as Build
import Data.Maybe (maybeToList)
import qualified Data.Text as Text
import qualified Data.Text.Encoding as Text
import Data.Word(Word8)
import Network.Xmpp.Sasl.Common
import Network.Xmpp.Sasl.StringPrep
import Network.Xmpp.Sasl.Types
-- | Bit-wise xor of byte strings
xorBS :: BS.ByteString -> BS.ByteString -> BS.ByteString
xorBS x y = BS.pack $ BS.zipWith xor x y
-- | Join byte strings with ","
merge :: [BS.ByteString] -> BS.ByteString
merge = BS.intercalate ","
-- | Infix concatenation of byte strings
(+++) :: BS.ByteString -> BS.ByteString -> BS.ByteString
(+++) = BS.append
-- | A nicer name for undefined, for use as a dummy token to determin
-- the hash function to use
hashToken :: (Crypto.Hash ctx hash) => hash
hashToken = undefined
-- | Salted Challenge Response Authentication Mechanism (SCRAM) SASL
-- mechanism according to RFC 5802.
--
-- This implementation is independent and polymorphic in the used hash function.
scram :: (Crypto.Hash ctx hash)
=> hash -- ^ Dummy argument to determine the hash to use; you
-- can safely pass undefined or a 'hashToken' to it
-> Text.Text -- ^ Authentication ID (user name)
-> Maybe Text.Text -- ^ Authorization ID
-> Text.Text -- ^ Password
-> SaslM ()
scram hashToken authcid authzid password = case credentials of
Nothing -> throwError $ AuthStringPrepError
Just (ac, az, pw) -> scramhelper hashToken ac az pw
where
credentials = do
ac <- normalizeUsername authcid
az <- case authzid of
Nothing -> Just Nothing
Just az' -> Just <$> normalizeUsername az'
pw <- normalizePassword password
return (ac, az, pw)
scramhelper hashToken authcid authzid' password = do
cnonce <- liftIO $ makeNonce
saslInit "SCRAM-SHA-1" (Just $ cFirstMessage cnonce)
sFirstMessage <- saslFromJust =<< pullChallenge
pairs <- toPairs sFirstMessage
(nonce, salt, ic) <- fromPairs pairs cnonce
let (cfm, v) = cFinalMessageAndVerifier nonce salt ic sFirstMessage cnonce
respond $ Just cfm
finalPairs <- toPairs =<< saslFromJust =<< pullFinalMessage
unless (lookup "v" finalPairs == Just v) $ throwError AuthServerAuthError
return ()
where
-- We need to jump through some hoops to get a polymorphic solution
encode :: Crypto.Hash ctx hash => hash -> hash -> BS.ByteString
encode _hashtoken = Crypto.encode
hash :: BS.ByteString -> BS.ByteString
hash str = encode hashToken $ Crypto.hash' str
hmac :: BS.ByteString -> BS.ByteString -> BS.ByteString
hmac key str = encode hashToken $ Crypto.hmac' (Crypto.MacKey key) str
authzid :: Maybe BS.ByteString
authzid = (\z -> "a=" +++ Text.encodeUtf8 z) <$> authzid'
gs2CbindFlag :: BS.ByteString
gs2CbindFlag = "n" -- we don't support channel binding yet
gs2Header :: BS.ByteString
gs2Header = merge $ [ gs2CbindFlag
, maybe "" id authzid
, ""
]
cbindData :: BS.ByteString
cbindData = "" -- we don't support channel binding yet
cFirstMessageBare :: BS.ByteString -> BS.ByteString
cFirstMessageBare cnonce = merge [ "n=" +++ Text.encodeUtf8 authcid
, "r=" +++ cnonce]
cFirstMessage :: BS.ByteString -> BS.ByteString
cFirstMessage cnonce = gs2Header +++ cFirstMessageBare cnonce
fromPairs :: Pairs
-> BS.ByteString
-> SaslM (BS.ByteString, BS.ByteString, Integer)
fromPairs pairs cnonce | Just nonce <- lookup "r" pairs
, cnonce `BS.isPrefixOf` nonce
, Just salt' <- lookup "s" pairs
, Right salt <- B64.decode salt'
, Just ic <- lookup "i" pairs
, [(i,"")] <- reads $ BS8.unpack ic
= return (nonce, salt, i)
fromPairs _ _ = throwError $ AuthChallengeError
cFinalMessageAndVerifier :: BS.ByteString
-> BS.ByteString
-> Integer
-> BS.ByteString
-> BS.ByteString
-> (BS.ByteString, BS.ByteString)
cFinalMessageAndVerifier nonce salt ic sfm cnonce
= (merge [ cFinalMessageWOProof
, "p=" +++ B64.encode clientProof
]
, B64.encode serverSignature
)
where
cFinalMessageWOProof :: BS.ByteString
cFinalMessageWOProof = merge [ "c=" +++ B64.encode gs2Header
, "r=" +++ nonce]
saltedPassword :: BS.ByteString
saltedPassword = hi (Text.encodeUtf8 password) salt ic
clientKey :: BS.ByteString
clientKey = hmac saltedPassword "Client Key"
storedKey :: BS.ByteString
storedKey = hash clientKey
authMessage :: BS.ByteString
authMessage = merge [ cFirstMessageBare cnonce
, sfm
, cFinalMessageWOProof
]
clientSignature :: BS.ByteString
clientSignature = hmac storedKey authMessage
clientProof :: BS.ByteString
clientProof = clientKey `xorBS` clientSignature
serverKey :: BS.ByteString
serverKey = hmac saltedPassword "Server Key"
serverSignature :: BS.ByteString
serverSignature = hmac serverKey authMessage
-- helper
hi :: BS.ByteString -> BS.ByteString -> Integer -> BS.ByteString
hi str salt ic = foldl1' xorBS (genericTake ic us)
where
u1 = hmac str (salt +++ (BS.pack [0,0,0,1]))
us = iterate (hmac str) u1
-- | 'scram' spezialised to the SHA-1 hash function, packaged as a SaslHandler
scramSha1 :: Text.Text -- ^ username
-> Maybe Text.Text -- ^ authorization ID
-> Text.Text -- ^ password
-> SaslHandler
scramSha1 authcid authzid passwd =
("SCRAM-SHA-1"
, scram (hashToken :: Crypto.SHA1) authcid authzid passwd
)