You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

68 lines
2.4 KiB

{-# OPTIONS_HADDOCK hide #-}
{-# LANGUAGE NoMonomorphismRestriction, OverloadedStrings #-}
module Network.Xmpp.Sasl
( xmppSasl
, digestMd5
, scramSha1
, plain
) where
14 years ago
14 years ago
import Control.Applicative
import Control.Arrow (left)
14 years ago
import Control.Monad
import Control.Monad.Error
import Control.Monad.State.Strict
import Data.Maybe (fromJust, isJust)
14 years ago
import qualified Crypto.Classes as CC
import qualified Data.Binary as Binary
14 years ago
import qualified Data.ByteString.Base64 as B64
14 years ago
import qualified Data.ByteString.Char8 as BS8
import qualified Data.ByteString.Lazy as BL
import qualified Data.Digest.Pure.MD5 as MD5
14 years ago
import qualified Data.List as L
import Data.Word (Word8)
14 years ago
import qualified Data.Text as Text
14 years ago
import Data.Text (Text)
14 years ago
import qualified Data.Text.Encoding as Text
import Network.Xmpp.Connection_
import Network.Xmpp.Stream
import Network.Xmpp.Types
14 years ago
import qualified System.Random as Random
import Network.Xmpp.Sasl.Types
import Network.Xmpp.Sasl.Mechanisms
import Control.Concurrent.STM.TMVar
-- | Uses the first supported mechanism to authenticate, if any. Updates the
-- state with non-password credentials and restarts the stream upon
Tweak failure approach I'm assuming and defining the following: 1. XMPP failures (which can occur at the TCP, TLS, and XML/XMPP layers (as a stream error or forbidden input)) are fatal; they will distrupt the XMPP session. 2. All fatal failures should be thrown (or similar) by `session', or any other function that might produce them. 3. Authentication failures that are not "XMPP failures" are not fatal. They do not necessarily terminate the stream. For example, the developer should be able to make another authentication attempt. The `Session' object returned by `session' might be useful even if the authentication fails. 4. We can (and should) use one single data type for fatal failures. (Previously, both StreamFailure and TlsFailure was used.) 5. We can catch and rethrow/wrap IO exceptions in the context of the Pontarius XMPP error system that we decide to use, making the error system more intuitive, Haskell-like, and more straight-forward to implement. Calling `error' may only be done in the case of a program error (a bug). 6. A logging system will remove the need for many of the error types. Only exceptions that seem likely to affect the flow of client applications should be defined. 7. The authentication functions are prone to fatal XMPP failures in addition to non-fatal authentication conditions. (Previously, `AuthStreamFailure' was used to wrap these errors.) I'm hereby suggesting (and implementing) the following: `StreamFailure' and `TlsFailure' should be joined into `XmppFailure'. `pullStanza' and the other Connection functions used to throw `IOException', `StreamFailure' and `TlsFailure' exceptions. With this patch, they have been converted to `StateT Connection IO (Either XmppFailure a)' computations. They also catch (some) IOException errors and wrap them in the new `XmppIOException' constructor. `newSession' is now `IO (Either XmppFailure Session)' as well (being capable of throwing IO exceptions). Whether or not to continue to a) wrap `XmppFailure' failures in an `AuthStreamFailure' equivalent, or, b) treat the authentication functions just like the other functions that may result in failure (Either XmppFailure a), depends on how Network.Xmpp.Connection.auth will be used. Since the latter will make `auth' more consistent, as well as remove the need for a wrapped (and special-case) "AuthFailure" type, I have decided to give the "b" approach a try. (The drawback being, of course, that authentication errors can not be accessed through the use of ErrorT. Whether or not this might be a problem, I don't really know at this point.) As the SASL code (and SaslM) depended on `AuthStreamFailure', it remains for internal use, at least for the time-being. `session' is now an ErrorT computation as well. Some functions have been updated as hacks, but this will be changed if we decide to move forward with this approach.
13 years ago
-- success. Returns `Nothing' on success, an `AuthFailure' if
-- authentication fails, or an `XmppFailure' if anything else fails.
xmppSasl :: [SaslHandler] -- ^ Acceptable authentication mechanisms and their
-- corresponding handlers
-> TMVar Connection
Tweak failure approach I'm assuming and defining the following: 1. XMPP failures (which can occur at the TCP, TLS, and XML/XMPP layers (as a stream error or forbidden input)) are fatal; they will distrupt the XMPP session. 2. All fatal failures should be thrown (or similar) by `session', or any other function that might produce them. 3. Authentication failures that are not "XMPP failures" are not fatal. They do not necessarily terminate the stream. For example, the developer should be able to make another authentication attempt. The `Session' object returned by `session' might be useful even if the authentication fails. 4. We can (and should) use one single data type for fatal failures. (Previously, both StreamFailure and TlsFailure was used.) 5. We can catch and rethrow/wrap IO exceptions in the context of the Pontarius XMPP error system that we decide to use, making the error system more intuitive, Haskell-like, and more straight-forward to implement. Calling `error' may only be done in the case of a program error (a bug). 6. A logging system will remove the need for many of the error types. Only exceptions that seem likely to affect the flow of client applications should be defined. 7. The authentication functions are prone to fatal XMPP failures in addition to non-fatal authentication conditions. (Previously, `AuthStreamFailure' was used to wrap these errors.) I'm hereby suggesting (and implementing) the following: `StreamFailure' and `TlsFailure' should be joined into `XmppFailure'. `pullStanza' and the other Connection functions used to throw `IOException', `StreamFailure' and `TlsFailure' exceptions. With this patch, they have been converted to `StateT Connection IO (Either XmppFailure a)' computations. They also catch (some) IOException errors and wrap them in the new `XmppIOException' constructor. `newSession' is now `IO (Either XmppFailure Session)' as well (being capable of throwing IO exceptions). Whether or not to continue to a) wrap `XmppFailure' failures in an `AuthStreamFailure' equivalent, or, b) treat the authentication functions just like the other functions that may result in failure (Either XmppFailure a), depends on how Network.Xmpp.Connection.auth will be used. Since the latter will make `auth' more consistent, as well as remove the need for a wrapped (and special-case) "AuthFailure" type, I have decided to give the "b" approach a try. (The drawback being, of course, that authentication errors can not be accessed through the use of ErrorT. Whether or not this might be a problem, I don't really know at this point.) As the SASL code (and SaslM) depended on `AuthStreamFailure', it remains for internal use, at least for the time-being. `session' is now an ErrorT computation as well. Some functions have been updated as hacks, but this will be changed if we decide to move forward with this approach.
13 years ago
-> IO (Either XmppFailure (Maybe AuthFailure))
xmppSasl handlers = withConnection $ do
-- Chooses the first mechanism that is acceptable by both the client and the
-- server.
mechanisms <- gets $ saslMechanisms . cFeatures
case (filter (\(name, _) -> name `elem` mechanisms)) handlers of
Tweak failure approach I'm assuming and defining the following: 1. XMPP failures (which can occur at the TCP, TLS, and XML/XMPP layers (as a stream error or forbidden input)) are fatal; they will distrupt the XMPP session. 2. All fatal failures should be thrown (or similar) by `session', or any other function that might produce them. 3. Authentication failures that are not "XMPP failures" are not fatal. They do not necessarily terminate the stream. For example, the developer should be able to make another authentication attempt. The `Session' object returned by `session' might be useful even if the authentication fails. 4. We can (and should) use one single data type for fatal failures. (Previously, both StreamFailure and TlsFailure was used.) 5. We can catch and rethrow/wrap IO exceptions in the context of the Pontarius XMPP error system that we decide to use, making the error system more intuitive, Haskell-like, and more straight-forward to implement. Calling `error' may only be done in the case of a program error (a bug). 6. A logging system will remove the need for many of the error types. Only exceptions that seem likely to affect the flow of client applications should be defined. 7. The authentication functions are prone to fatal XMPP failures in addition to non-fatal authentication conditions. (Previously, `AuthStreamFailure' was used to wrap these errors.) I'm hereby suggesting (and implementing) the following: `StreamFailure' and `TlsFailure' should be joined into `XmppFailure'. `pullStanza' and the other Connection functions used to throw `IOException', `StreamFailure' and `TlsFailure' exceptions. With this patch, they have been converted to `StateT Connection IO (Either XmppFailure a)' computations. They also catch (some) IOException errors and wrap them in the new `XmppIOException' constructor. `newSession' is now `IO (Either XmppFailure Session)' as well (being capable of throwing IO exceptions). Whether or not to continue to a) wrap `XmppFailure' failures in an `AuthStreamFailure' equivalent, or, b) treat the authentication functions just like the other functions that may result in failure (Either XmppFailure a), depends on how Network.Xmpp.Connection.auth will be used. Since the latter will make `auth' more consistent, as well as remove the need for a wrapped (and special-case) "AuthFailure" type, I have decided to give the "b" approach a try. (The drawback being, of course, that authentication errors can not be accessed through the use of ErrorT. Whether or not this might be a problem, I don't really know at this point.) As the SASL code (and SaslM) depended on `AuthStreamFailure', it remains for internal use, at least for the time-being. `session' is now an ErrorT computation as well. Some functions have been updated as hacks, but this will be changed if we decide to move forward with this approach.
13 years ago
[] -> return $ Right $ Just $ AuthNoAcceptableMechanism mechanisms
(_name, handler):_ -> do
cs <- gets cState
case cs of
Tweak failure approach I'm assuming and defining the following: 1. XMPP failures (which can occur at the TCP, TLS, and XML/XMPP layers (as a stream error or forbidden input)) are fatal; they will distrupt the XMPP session. 2. All fatal failures should be thrown (or similar) by `session', or any other function that might produce them. 3. Authentication failures that are not "XMPP failures" are not fatal. They do not necessarily terminate the stream. For example, the developer should be able to make another authentication attempt. The `Session' object returned by `session' might be useful even if the authentication fails. 4. We can (and should) use one single data type for fatal failures. (Previously, both StreamFailure and TlsFailure was used.) 5. We can catch and rethrow/wrap IO exceptions in the context of the Pontarius XMPP error system that we decide to use, making the error system more intuitive, Haskell-like, and more straight-forward to implement. Calling `error' may only be done in the case of a program error (a bug). 6. A logging system will remove the need for many of the error types. Only exceptions that seem likely to affect the flow of client applications should be defined. 7. The authentication functions are prone to fatal XMPP failures in addition to non-fatal authentication conditions. (Previously, `AuthStreamFailure' was used to wrap these errors.) I'm hereby suggesting (and implementing) the following: `StreamFailure' and `TlsFailure' should be joined into `XmppFailure'. `pullStanza' and the other Connection functions used to throw `IOException', `StreamFailure' and `TlsFailure' exceptions. With this patch, they have been converted to `StateT Connection IO (Either XmppFailure a)' computations. They also catch (some) IOException errors and wrap them in the new `XmppIOException' constructor. `newSession' is now `IO (Either XmppFailure Session)' as well (being capable of throwing IO exceptions). Whether or not to continue to a) wrap `XmppFailure' failures in an `AuthStreamFailure' equivalent, or, b) treat the authentication functions just like the other functions that may result in failure (Either XmppFailure a), depends on how Network.Xmpp.Connection.auth will be used. Since the latter will make `auth' more consistent, as well as remove the need for a wrapped (and special-case) "AuthFailure" type, I have decided to give the "b" approach a try. (The drawback being, of course, that authentication errors can not be accessed through the use of ErrorT. Whether or not this might be a problem, I don't really know at this point.) As the SASL code (and SaslM) depended on `AuthStreamFailure', it remains for internal use, at least for the time-being. `session' is now an ErrorT computation as well. Some functions have been updated as hacks, but this will be changed if we decide to move forward with this approach.
13 years ago
ConnectionClosed -> return . Right $ Just AuthNoConnection
_ -> do
Tweak failure approach I'm assuming and defining the following: 1. XMPP failures (which can occur at the TCP, TLS, and XML/XMPP layers (as a stream error or forbidden input)) are fatal; they will distrupt the XMPP session. 2. All fatal failures should be thrown (or similar) by `session', or any other function that might produce them. 3. Authentication failures that are not "XMPP failures" are not fatal. They do not necessarily terminate the stream. For example, the developer should be able to make another authentication attempt. The `Session' object returned by `session' might be useful even if the authentication fails. 4. We can (and should) use one single data type for fatal failures. (Previously, both StreamFailure and TlsFailure was used.) 5. We can catch and rethrow/wrap IO exceptions in the context of the Pontarius XMPP error system that we decide to use, making the error system more intuitive, Haskell-like, and more straight-forward to implement. Calling `error' may only be done in the case of a program error (a bug). 6. A logging system will remove the need for many of the error types. Only exceptions that seem likely to affect the flow of client applications should be defined. 7. The authentication functions are prone to fatal XMPP failures in addition to non-fatal authentication conditions. (Previously, `AuthStreamFailure' was used to wrap these errors.) I'm hereby suggesting (and implementing) the following: `StreamFailure' and `TlsFailure' should be joined into `XmppFailure'. `pullStanza' and the other Connection functions used to throw `IOException', `StreamFailure' and `TlsFailure' exceptions. With this patch, they have been converted to `StateT Connection IO (Either XmppFailure a)' computations. They also catch (some) IOException errors and wrap them in the new `XmppIOException' constructor. `newSession' is now `IO (Either XmppFailure Session)' as well (being capable of throwing IO exceptions). Whether or not to continue to a) wrap `XmppFailure' failures in an `AuthStreamFailure' equivalent, or, b) treat the authentication functions just like the other functions that may result in failure (Either XmppFailure a), depends on how Network.Xmpp.Connection.auth will be used. Since the latter will make `auth' more consistent, as well as remove the need for a wrapped (and special-case) "AuthFailure" type, I have decided to give the "b" approach a try. (The drawback being, of course, that authentication errors can not be accessed through the use of ErrorT. Whether or not this might be a problem, I don't really know at this point.) As the SASL code (and SaslM) depended on `AuthStreamFailure', it remains for internal use, at least for the time-being. `session' is now an ErrorT computation as well. Some functions have been updated as hacks, but this will be changed if we decide to move forward with this approach.
13 years ago
r <- runErrorT handler
case r of
Left ae -> return $ Right $ Just ae
Right a -> do
_ <- runErrorT $ ErrorT restartStream
return $ Right $ Nothing